Serveur d'exploration sur la détoxication des champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Importance of catalase in the adaptive response to hydrogen peroxide: analysis of acatalasaemic Saccharomyces cerevisiae.

Identifieur interne : 002B21 ( Main/Exploration ); précédent : 002B20; suivant : 002B22

Importance of catalase in the adaptive response to hydrogen peroxide: analysis of acatalasaemic Saccharomyces cerevisiae.

Auteurs : S. Izawa [Japon] ; Y. Inoue ; A. Kimura

Source :

RBID : pubmed:8947468

Descripteurs français

English descriptors

Abstract

Controversy about the importance of catalase in the detoxification of H2O2 in human erythrocytes continues. It has been suggested that catalase has no role in the clearance of H2O2 in erythrocytes. In the present study we investigated the role of catalase in the defence mechanism against oxidative stress using Saccharomyces cerevisiae. S. cerevisiae has two catalases, catalase A and catalase T. We constructed a double mutant (acatalasaemic mutant) unable to produce either catalase A or catalase T, and compared it with wild-type and single-mutant cells. The acatalasaemic mutant cells showed a similar growth rate to wild-type cells under non-oxidative stress conditions, and showed a similar susceptibility to H2O2 stress in the exponential growth phase. The acatalasaemic mutant cells at stationary phase were, however, much more sensitive to H2O2 stress than wild-type and single-mutant cells. Moreover, the ability of acatalasaemic and single-mutant cells to show adaptation to 2 mM H2O2 was distinctly inferior to that of wild-type cells. These results suggest that catalase is not essential for yeast cells under normal conditions, but plays an important role in the acquisition of tolerance to oxidative stress in the adaptive response of these cells.

DOI: 10.1042/bj3200061
PubMed: 8947468
PubMed Central: PMC1217898


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Importance of catalase in the adaptive response to hydrogen peroxide: analysis of acatalasaemic Saccharomyces cerevisiae.</title>
<author>
<name sortKey="Izawa, S" sort="Izawa, S" uniqKey="Izawa S" first="S" last="Izawa">S. Izawa</name>
<affiliation wicri:level="4">
<nlm:affiliation>Laboratory of Molecular Breeding of Microorganisms, Kyoto University, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Laboratory of Molecular Breeding of Microorganisms, Kyoto University</wicri:regionArea>
<placeName>
<settlement type="city">Kyoto</settlement>
<region type="prefecture">Région du Kansai</region>
</placeName>
<orgName type="university">Université de Kyoto</orgName>
</affiliation>
</author>
<author>
<name sortKey="Inoue, Y" sort="Inoue, Y" uniqKey="Inoue Y" first="Y" last="Inoue">Y. Inoue</name>
</author>
<author>
<name sortKey="Kimura, A" sort="Kimura, A" uniqKey="Kimura A" first="A" last="Kimura">A. Kimura</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1996">1996</date>
<idno type="RBID">pubmed:8947468</idno>
<idno type="pmid">8947468</idno>
<idno type="pmc">PMC1217898</idno>
<idno type="doi">10.1042/bj3200061</idno>
<idno type="wicri:Area/Main/Corpus">002B01</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002B01</idno>
<idno type="wicri:Area/Main/Curation">002B01</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002B01</idno>
<idno type="wicri:Area/Main/Exploration">002B01</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Importance of catalase in the adaptive response to hydrogen peroxide: analysis of acatalasaemic Saccharomyces cerevisiae.</title>
<author>
<name sortKey="Izawa, S" sort="Izawa, S" uniqKey="Izawa S" first="S" last="Izawa">S. Izawa</name>
<affiliation wicri:level="4">
<nlm:affiliation>Laboratory of Molecular Breeding of Microorganisms, Kyoto University, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Laboratory of Molecular Breeding of Microorganisms, Kyoto University</wicri:regionArea>
<placeName>
<settlement type="city">Kyoto</settlement>
<region type="prefecture">Région du Kansai</region>
</placeName>
<orgName type="university">Université de Kyoto</orgName>
</affiliation>
</author>
<author>
<name sortKey="Inoue, Y" sort="Inoue, Y" uniqKey="Inoue Y" first="Y" last="Inoue">Y. Inoue</name>
</author>
<author>
<name sortKey="Kimura, A" sort="Kimura, A" uniqKey="Kimura A" first="A" last="Kimura">A. Kimura</name>
</author>
</analytic>
<series>
<title level="j">The Biochemical journal</title>
<idno type="ISSN">0264-6021</idno>
<imprint>
<date when="1996" type="published">1996</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptation, Physiological (MeSH)</term>
<term>Catalase (metabolism)</term>
<term>Cell Division (MeSH)</term>
<term>Cytochrome-c Peroxidase (metabolism)</term>
<term>Glucosephosphate Dehydrogenase (metabolism)</term>
<term>Hydrogen Peroxide (pharmacology)</term>
<term>Mutation (MeSH)</term>
<term>Oxidative Stress (MeSH)</term>
<term>Saccharomyces cerevisiae (drug effects)</term>
<term>Saccharomyces cerevisiae (enzymology)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adaptation physiologique (MeSH)</term>
<term>Catalase (métabolisme)</term>
<term>Cytochrome-c peroxidase (métabolisme)</term>
<term>Division cellulaire (MeSH)</term>
<term>Glucose 6-phosphate dehydrogenase (métabolisme)</term>
<term>Mutation (MeSH)</term>
<term>Peroxyde d'hydrogène (pharmacologie)</term>
<term>Saccharomyces cerevisiae (effets des médicaments et des substances chimiques)</term>
<term>Saccharomyces cerevisiae (enzymologie)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Stress oxydatif (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Catalase</term>
<term>Cytochrome-c Peroxidase</term>
<term>Glucosephosphate Dehydrogenase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Hydrogen Peroxide</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Catalase</term>
<term>Cytochrome-c peroxidase</term>
<term>Glucose 6-phosphate dehydrogenase</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Peroxyde d'hydrogène</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adaptation, Physiological</term>
<term>Cell Division</term>
<term>Mutation</term>
<term>Oxidative Stress</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Adaptation physiologique</term>
<term>Division cellulaire</term>
<term>Mutation</term>
<term>Stress oxydatif</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Controversy about the importance of catalase in the detoxification of H2O2 in human erythrocytes continues. It has been suggested that catalase has no role in the clearance of H2O2 in erythrocytes. In the present study we investigated the role of catalase in the defence mechanism against oxidative stress using Saccharomyces cerevisiae. S. cerevisiae has two catalases, catalase A and catalase T. We constructed a double mutant (acatalasaemic mutant) unable to produce either catalase A or catalase T, and compared it with wild-type and single-mutant cells. The acatalasaemic mutant cells showed a similar growth rate to wild-type cells under non-oxidative stress conditions, and showed a similar susceptibility to H2O2 stress in the exponential growth phase. The acatalasaemic mutant cells at stationary phase were, however, much more sensitive to H2O2 stress than wild-type and single-mutant cells. Moreover, the ability of acatalasaemic and single-mutant cells to show adaptation to 2 mM H2O2 was distinctly inferior to that of wild-type cells. These results suggest that catalase is not essential for yeast cells under normal conditions, but plays an important role in the acquisition of tolerance to oxidative stress in the adaptive response of these cells.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">8947468</PMID>
<DateCompleted>
<Year>1997</Year>
<Month>01</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>05</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0264-6021</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>320 ( Pt 1)</Volume>
<PubDate>
<Year>1996</Year>
<Month>Nov</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>The Biochemical journal</Title>
<ISOAbbreviation>Biochem J</ISOAbbreviation>
</Journal>
<ArticleTitle>Importance of catalase in the adaptive response to hydrogen peroxide: analysis of acatalasaemic Saccharomyces cerevisiae.</ArticleTitle>
<Pagination>
<MedlinePgn>61-7</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Controversy about the importance of catalase in the detoxification of H2O2 in human erythrocytes continues. It has been suggested that catalase has no role in the clearance of H2O2 in erythrocytes. In the present study we investigated the role of catalase in the defence mechanism against oxidative stress using Saccharomyces cerevisiae. S. cerevisiae has two catalases, catalase A and catalase T. We constructed a double mutant (acatalasaemic mutant) unable to produce either catalase A or catalase T, and compared it with wild-type and single-mutant cells. The acatalasaemic mutant cells showed a similar growth rate to wild-type cells under non-oxidative stress conditions, and showed a similar susceptibility to H2O2 stress in the exponential growth phase. The acatalasaemic mutant cells at stationary phase were, however, much more sensitive to H2O2 stress than wild-type and single-mutant cells. Moreover, the ability of acatalasaemic and single-mutant cells to show adaptation to 2 mM H2O2 was distinctly inferior to that of wild-type cells. These results suggest that catalase is not essential for yeast cells under normal conditions, but plays an important role in the acquisition of tolerance to oxidative stress in the adaptive response of these cells.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Izawa</LastName>
<ForeName>S</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Molecular Breeding of Microorganisms, Kyoto University, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Inoue</LastName>
<ForeName>Y</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kimura</LastName>
<ForeName>A</ForeName>
<Initials>A</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Biochem J</MedlineTA>
<NlmUniqueID>2984726R</NlmUniqueID>
<ISSNLinking>0264-6021</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>BBX060AN9V</RegistryNumber>
<NameOfSubstance UI="D006861">Hydrogen Peroxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.1.1.49</RegistryNumber>
<NameOfSubstance UI="D005954">Glucosephosphate Dehydrogenase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.5</RegistryNumber>
<NameOfSubstance UI="D003578">Cytochrome-c Peroxidase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.6</RegistryNumber>
<NameOfSubstance UI="D002374">Catalase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000222" MajorTopicYN="N">Adaptation, Physiological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002374" MajorTopicYN="N">Catalase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002455" MajorTopicYN="N">Cell Division</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003578" MajorTopicYN="N">Cytochrome-c Peroxidase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005954" MajorTopicYN="N">Glucosephosphate Dehydrogenase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006861" MajorTopicYN="N">Hydrogen Peroxide</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="N">Oxidative Stress</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1996</Year>
<Month>11</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1996</Year>
<Month>11</Month>
<Day>15</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1996</Year>
<Month>11</Month>
<Day>15</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">8947468</ArticleId>
<ArticleId IdType="pmc">PMC1217898</ArticleId>
<ArticleId IdType="doi">10.1042/bj3200061</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Gen Genet. 1986 Apr;203(1):73-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2423850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 1965 Jul;44:1187-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14328395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1986 Nov;168(2):1026-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3536846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1987 Jan 15;262(2):660-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3805001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):7924-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1518815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1992 Oct;174(20):6678-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1400218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1988 Sep 1;176(1):159-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3046940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 1989 Jan;73(1):334-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2491951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1989 Dec 20;210(4):709-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2693740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1991 Feb;11(2):699-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1899286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1991 Mar;10(3):585-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1848176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 1991 May 1;77(9):2059-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2018843</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Lab Clin Med. 1991 Jul;118(1):7-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2066646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Microbiol. 1992 Feb;138(2):329-335</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1564443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Microbiol Pol B. 1970;2(2):111-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5433024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Enzymol Relat Areas Mol Biol. 1970;33:309-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4318313</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1974 May 1;41(2):283-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4853207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1984 Aug 1;140(2):532-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6091498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 1986 Jan;77(1):319-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3944256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1992 Dec 14;314(2):179-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1459249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Microbiol. 1993 Mar;139(3):501-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8473859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1993 May;12(5):1997-2003</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8387917</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Rev. 1993 Jun;57(2):383-401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8393130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 1993 Nov;24(5):388-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8299153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1994 Jun 1;300 ( Pt 2):531-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8002960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 1994 Jul 1;84(1):325-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8018928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1994 Jul;13(2):265-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7984106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1995 Feb 20;317(1):1-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7872770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 1994 Dec;140 ( Pt 12):3277-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7881546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 1995 Mar;95(3):1047-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7883952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1995 Jul 10;368(1):73-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7615092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1995 Nov 1;14(21):5209-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7489710</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioessays. 1995 Nov;17(11):959-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8526890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1986 Nov 3;160(3):487-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3536508</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Japon</li>
</country>
<region>
<li>Région du Kansai</li>
</region>
<settlement>
<li>Kyoto</li>
</settlement>
<orgName>
<li>Université de Kyoto</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Inoue, Y" sort="Inoue, Y" uniqKey="Inoue Y" first="Y" last="Inoue">Y. Inoue</name>
<name sortKey="Kimura, A" sort="Kimura, A" uniqKey="Kimura A" first="A" last="Kimura">A. Kimura</name>
</noCountry>
<country name="Japon">
<region name="Région du Kansai">
<name sortKey="Izawa, S" sort="Izawa, S" uniqKey="Izawa S" first="S" last="Izawa">S. Izawa</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/DetoxFungiV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002B21 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002B21 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    DetoxFungiV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:8947468
   |texte=   Importance of catalase in the adaptive response to hydrogen peroxide: analysis of acatalasaemic Saccharomyces cerevisiae.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:8947468" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a DetoxFungiV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 16:09:04 2020. Site generation: Fri Nov 20 16:15:24 2020